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ABSTRACT

During maintenance, developers often need to understand
the purpose of a test. One of the most potentially useful
sources of information for understanding a test is its name.
Ideally, test names are descriptive in that they accurately
summarize both the scenario and the expected outcome
of the test. Despite the benefits of being descriptive, test
names often fall short of this goal. In this paper we present
a new approach for automatically generating descriptive
names for existing test bodies. Using a combination of
natural-language program analysis and text generation, the
technique creates names that summarize the test’s scenario
and the expected outcome. The results of our evaluation
show that, (1) compared to alternative approaches, the names
generated by our technique are significantly more similar to
human-generated names and are nearly always preferred by
developers, (2) the names generated by our technique are
preferred over or are equivalent to the original test names
in 83% of cases, and (3) our technique is several orders of
magnitude faster than manually writing test names.
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1. INTRODUCTION

One of the most difficult aspects of software maintenance
is comprehension—understanding the software that is being
modified. In fact, the amount of time needed by developers
to locate and understand code is frequently greater than the
amount of time that they spend making modifications [18].
In the context of testing, one of the most frequent compre-
hension tasks is understanding the purpose of a test. For
example, when a test fails, it is necessary to understand
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the purpose of the test as a first step towards identifying
the cause of the failure. In addition, knowing the purpose
of a test is necessary to decide whether the test should be
left alone, modified, or removed in response to changes in
the application under test and whether the test should be
included in a regression test suite.

One of the most potentially useful sources of information
for understanding a test is its name. Ideally, test names
are descriptive in that they accurately summarize both the
scenario and the expected outcome of the test [30]. If a test’s
name is descriptive, developers no longer have to read through
its body to understand its purpose. In addition, descriptive
names (1) make it easier to tell if some functionality is not
being tested—if a behavior is not mentioned in the name of
a test, then the behavior is not being tested, (2) help prevent
tests that are too large or contain unrelated assertions—if
a test cannot be summarized, it likely should be split into
multiple tests, and (3) serve as documentation for the class
under test—a class’s supported functionality can be identified
by reading the names of its tests.

Despite their numerous benefits, not all tests have de-
scriptive names. Because naming is difficult and there is
no immediate downside, developers often write poor names.
For example, developers may create generic test names (e.g.,
testl, test2, etc.) or test names that contain little infor-
mation (e.g., testAdd, testSubtract, etc.). In addition, a
test’s name can become erroneous when it is out of sync
with the test’s body. For instance, a developer may modify
a test’s body but fail to make the corresponding changes to
the test’s name. Such erroneous names no longer accurately
summarize the test’s body. In practice, erroneous names
can be more harmful than poor names. Because poor test
names are often easily identifiable, developers are unlikely
to consider them useful sources information. Conversely,
erroneous names often appear plausible and can easily lead
developers into making incorrect assumptions.

In this paper we present a new, natural language program
analysis (NLPA)-based technique that can help simplify the
comprehension task of understanding the purposes of tests.
The technique accomplishes this by automatically generating
descriptive names for unit tests. At a high-level, the tech-
nique statically analyzes tests to identify the parts of the
body that correspond to the test’s scenario and expected
outcome. To identify these parts, the technique uses both
syntactic knowledge of how unit tests are commonly struc-
tured and the semantic knowledge captured in the names of
entities used by the test (e.g., variables, parameters, methods,
etc.). Then, using text generation, the technique creates a



descriptive name that summarizes both the scenario and the
expected outcome.

To evaluate our technique, we implemented it in a pro-
totype tool, NameAssist, that automatically generates de-
scriptive test names for unit tests written using the JUnit
framework. Using the prototype, we conducted an empirical
evaluation of the technique. The results of our evaluation
are promising and show that the technique is feasible, useful,
and effective.

Specifically, this work makes the following contributions:

e a novel, NLPA-based technique for automatically gen-
erating descriptive test names for unit tests

e NameAssist, a prototype implementation of the tech-
nique that automatically generates descriptive names
for unit tests written using the JUnit framework

e an empirical evaluation of the technique that demon-
strates that (1) compared to alternative approaches,
names generated by NameAssist are significantly more
similar to human-generated names and are nearly al-
ways preferred by developers, (2) names generated by
NameAssist are preferred over or are judged equiva-
lent to the original test names in 83 % of cases, and
(3) the runtime costs of NameAssist are several orders
of magnitude less than the amount of time needed by
developers to manually generate descriptive names.

2. MOTIVATION

To motivate our technique, we performed an exploratory
study of the names of 213,423 real-world test cases from over
9,000 publicly available Java projects hosted on SourceForge.
Selecting such a large number of varied projects helps address
the potential biases associated with small samples. Because
these projects include applications of various sizes, ages, and
coding styles they are likely to contain representatives of var-
ious testing styles which helps improve the generalizability
of our results. To identify the test names, we initially consid-
ered all 16,183,516 methods defined in these projects. Then,
based on unit testing conventions, we filtered out methods
whose name does not start with “test” (except if they have
an @Test annotation), methods that are declared inside of
anonymous classes, and methods that accept parameters.

To analyze the test names, we used a custom parser for
tagging test names with their parts of test (POTs) [33]. The
POTs identified by the parser include the action, action
object, action modifiers, predicate, and predicate object. In
general, the action, action object, and action modifiers com-
pose the action phrase, which should describe the scenario,
while the predicate and predicate object compose the pred-
icate phrase, which should describe the expected outcome.
For example, in the test name testSettingHeightThatIs-
TooSmallLeavesHeightUnchanged, the action phrase is com-
prised of the action, “setting”, the action object, “height”,
and the action modifiers, “that is too small”. The predicate
phrase is comprised of the predicate, “leaves unchanged”, and
the predicate object, “height”.

Using the POTs assigned by the parser, we consider a test
name to contain a full action phrase if the name has (1) an
action that is some variation of “get” or “set” (e.g., “getting”,
“gets”, etc.) and an action object, or (2) an action that is
not some variation of “get” or “set” (e.g., “drawing”, “lock”,
“send”, etc.) with or without an action object. We consider
a test name to contain a full predicate phrase if the name
has both a predicate and a predicate object. Then, based

on whether a test name contains a full action phrase and a
full predicate phrase, we classify the test name as follows:
vacuous names are test names that contain neither a full
action phrase nor a full predicate phrase; partial names are
test names that contain either a full action phrase or a full
predicate phrase, but not both; and complete names are
test names that contain both a full action phrase and a full
predicate phrase.

In our set of test names, we found that ~29% are vac-
uous (62,674 out of 213,423), ~62 % are partial (132,057
out of 213,423), and only ~9% are complete (18,692 out
of 213,423). As this data shows, partial names are the
most common. Although this may seem promising, in the
majority of these cases, the test name contains only the
name of the method under test. For example, we found
1,724 tests named testEquals and 1,087 tests named test-
Serialization. While including the name of the method
under test is better than nothing, it is unlikely that such
names will be sufficient to help developers understand the
purposes of the tests. Vacuous names are the second most
common. In general, these test names contain the word “test”
optionally followed by a number. For example, we found 909
tests named test, 514 tests named testl, 342 tests named
test2, etc. Clearly, these names are useless for understand-
ing the purposes of the tests. Finally, complete names are
the least common. This set includes test names such as
testGetSelectorThrowsClassCastException and testGet-—
AdapterDoesNotAcceptNullArgument that appear to explain
both the scenario and the expected outcome.

The results of this study motivate our technique by show-
ing that a majority of existing test names are either vacuous
or partial. Because such names are not complete, they do
not contain the information necessary for supporting com-
mon maintenance tasks such as understanding the purposes
of tests. Our technique addresses this issue by analyzing
test bodies to automatically generate descriptive names that
summarize both the test’s scenario and its expected outcome.

3. GENERATING DESCRIPTIVE NAMES

Figure 1 shows a high-level overview of our approach. As
the figure shows, the technique requires two inputs: a test
body and the application under test. It creates corresponding
descriptive test names using two phases: the analysis phase
and the text generation phase.

The first phase, analysis, involves statically analyzing the
test body and application under test to identify the infor-
mation that should be summarized in the descriptive name.
Based on the results of our motivating study (see Section 2),
we found that there are three primary pieces of information
that are included in descriptive names: the action and sce-
nario under test, which together comprise the test’s scenario,
and the expected outcome. The action is the focus of the test.
It is usually an invocation of one of the class under test’s in-
stance methods but it could also be an object allocation (e.g.,
creating an object with new or a static factory method). The
expected outcome is the part of the test that checks whether
the result of performing the action matches the tester’s expec-
tation. In a unit test, this is usually one or more assertions
(e.g., assertEquals, assertTrue, etc.). Finally, the scenario
under test is the part of a test that constructs the environ-
ment in which the action should be performed. In general,
the scenario under test is the largest part of the test and
it frequently contains too much information to include in
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Figure 1: Overview of our approach for generating descriptive test names.

public void test() {
servlet = new BarcodeServlet();
params.put("height", "200");
params.put("width", "3");
params.put('"resolution", "72");
req.setParameters(params);
servlet.doGet(req, res);
Barcode barcode = servlet.getBarcode();
assertEquals(barcode.getResolution(), 72);

O~NOUAE WN P

(a)
small testDoGet
medium testDoGetResolutionIs72

full testDoGetResolutionIs72WhenParamsResolutionIs72And
SettingParameters

(b)
Figure 2: Example JUnit test case (a) and automat-
ically generated descriptive names (b).

the test name. To prioritize the expressions included in the
scenario under test, the technique uses a new data struc-
ture called the action dependency graph which takes into
account both data dependencies among the elements of the
scenario under test, but also semantic connections between
the elements and the expected outcome.

The second phase, text generation, takes as input the in-
formation identified by the first phase. It then organizes
the action, expected outcome, and scenario under test and
translates them into a descriptive test name. Because there
is a wide variety in what information testers want to in-
clude in their test’s names, the text generation phase uses
a template-based approach that allows testers to customize
the level of information included in the descriptive names.
We provide three built-in templates: small, which generates
names that contain only the test’s action; medium, which
generates names that contain the test’s action and expected
outcome; and full, which generates names that contain the
test’s action, expected outcome, and scenario under test.
Given a test name template, the next step is to translate the
information required by the template into natural language.
Because the action, expected outcome, and scenario under
test are usually a small number of expression types (e.g.,
method invocations), we developed a rule-based approach
for converting them into English phrases that follow both
Java identifier restrictions and common test naming con-
ventions. Finally, the individual phrases are concatenated
together by adding necessary conjunctives and placed inside
the template.

3.1 Concrete Example

As a concrete example of how our technique generates test
names, consider the test shown in Figure 2a and assume that
a developer wants to replace the test’s existing name with
a more descriptive version. For this example, the analysis
phase of the technique identifies the call to doGet at Line 6
as the test’s action; the call to assertEquals at Line 8 that

compares the resolution of barcode to 72 as the expected out-
come; and the creation of a new BarcodeServlet at Line 1,
the calls to put at Lines 2-4, and the call to setParame-
ters at Line 5 as the scenario under test with the calls to
setParameters at Line 5 and put at Line 4 being the most
important parts of the scenario under test.

Depending on the template that is used, the text genera-
tion phase generates one of the three descriptive names shown
in Figure 2b. If the small template is used, the action is
straightforwardly translated into the phrase “DoGet”. If the
medium template is used, the expected outcome is translated
into “Resolutionls72” and is appended to the small name,
and if the full template is used, the most important elements
of the scenario under test are translated into “ParamsReso-
lutionls72AndSettingParameters” and are appended to the
medium name using “When” as a conjunction.

3.2 Phase 1: Analysis

The goal of the analysis phase is to identify the action,
expected outcome, and scenario under test contained in a test.
The remainder of this section describes how the technique
uses various forms of static analysis to identify these pieces
of information.

3.2.1 Identifying the Action

The first step towards identifying the action is to identify
the class under test. In most cases, the class under test
can be inferred by considering the name of the class that
contains the test. For example, tests inside a class called
TestFoo or FooTest usually test methods of class Foo. If
this naming convention is followed, the class under test can
be easily identified by stripping the leading or trailing “Test”
from a test class’s name. Unfortunately, identifying the class
under test is not always this simple. We observed a number
of counter-examples in real test suites.

To account for cases where the standard test class naming
convention is not followed, the analysis phase uses a rule-
based system for determining the class under test. The
technique considers the following rules, in order, until it
identifies the class under test: (1) if a class with the name
of the test’s containing class, minus “Test”, exists and has
one of its methods invoked by the test, it is considered the
class under test, (2) if the test contains a single constructor
invocation, the class whose constructor is called is considered
the class under test, (3) if the test contains a single factory
method and a class with the same name as the factory class,
minus “Factory”, exists it is considered the class under test,
(4) if the test invokes a non-getter method before calling an
assertion method, the non-getter method’s declaring class
is considered the class under test, (5) if the test invokes a
method before calling an assertion method, the method’s
declaring class is considered the class under test, (6) if the
test invokes a method as part of calling an assertion method,
the method’s declaring class is considered the class under
test, and (7) if no other rule applies, Object is considered



the class under test. For example, the class containing the
unit test shown in Figure 2 is called BarcodeServletTest
that satisfies the first rule, and therefore BarcodeServlet is
chosen as the class under test.

Identifying the class under test is a necessary prerequi-
site for identifying a test’s action because the action is an
invocation of a method declared by the class under test (or
the creation of an instance of the class under test via new or
a factory method). Because we have already identified the
class under test in the first step, in the second step we only
need to consider expressions that are related to the class
under test as potential actions. Specifically, the potential
actions include (1) invocations of methods declared by the
class under test that occur before, or as part of, the asser-
tion, and (2) instantiations of the class under test that occur
before the assertion. For the example shown in Figure 2,
the set of potential actions contains the instantiation of Bar-
codeServlet at Line 1, the call to doGet at Line 6, and the
call to getBarcode at Line 7.

Again, we use a rule-based approach to choose the action
from the set of potential actions. These rules include: (1) if
the set of potential actions contains a single element (either
method invocation or object instantiation), it is chosen as
the action, (2) if the set of potential actions contains only
one object instantiation and one getter method invocation,
the object instantiation is chosen as the action, (3) if the set
of potential actions contains one or more non-getter method
invocations, the one closest to the assertion is chosen as the
action, (4) if the set of potential actions contains one or
more method invocations, the one closest to the assertion is
chosen as the action, and (5) if the set of potenial actions
contains one or more object instantiations, the one closest
to the assertion is chosen as the action. For our running
example, the third rule is the first one that is satisfied which
results in the call to doGet at Line 6 being selected as the
test’s action.

Both the rules for identifying the class under test and the
action were derived based on our examination of existing
tests in our motivating study. While they perform well, as
seen in our evaluation (Section 4), it is unlikely that they
are complete. If additional experimentation would reveal
shortcomings, we will adjust the approach by modifying the
rule set appropriately.

3.2.2 Identifying the Expected Outcome

The expected outcome part of a test is used to check
whether the result of performing the action matches the
tester’s expectation. In a unit test, this is done by calling
a JUnit assertion method (e.g., assertEquals, assertTrue,
etc.). Currently, we focus on tests with a single assertion.
This choice allows us to explore the feasibility of automati-
cally generating descriptive test names without reducing the
scope of the problem too far; in our study of real tests (see
Section 2), we found that a significant number follow this
recommendation. In future work we plan on investigating ap-
proaches for summarizing multiple assertion that are similar
to the action dependency graph (see Section 3.2.3).

While identifying calls to assertions is straightforward, gen-
erating descriptive names requires a detailed understanding
not only of what method is being called but also which argu-
ment represents the tester’s expectation (i.e., the expected
value) and which argument represents the result of perform-
ing the action (i.e., the actual value). For single parameter

serviet.doGet(req res)
req.setParameters(params)

servlet

servlet = new BarcodeServlet()

[pmeun\,pul("heighl","200”)] [pamms.put(”width”.”3")] [parzuns.pul("resolulinn",”72”)]

Figure 3: An example action dependency graph.

assertions (e.g., assertTrue, assertFalse, etc.), clearly the
single argument is the actual value and the expected value
is encoded in the assertion’s name (e.g., true, false, etc.).
For multiple parameter assertions (e.g., assertEquals), the
situation is not as straightforward. Although the JUnit API
declares the first parameter to be the expected value, we
found that testers often switch the order of the parameters.

While reversing the argument order does not impact the
test’s ability to detect errors, it does mean that we cannot
rely on argument order to identify the expected value. In-
stead we use static analysis to track backwards along each
argument’s use-def chains. If one argument resolves to a
constant and the other to a method invocation, we consider
the constant to be the expected value and the method in-
vocation to be the actual value. If both resolve to method
invocations, the technique checks whether one of the invo-
cations calls a method declared by the class under test. If
so, the other method invocation is treated as the expected
value. Otherwise, the technique assumes the tester is using
the API correctly and considers the first argument as the
expected value. For the example shown in Figure 2a, al-
though the order of the arguments is reversed, the technique
can correctly identify 72 as the expected value since only
one of the arguments is a constant. Again, these rules were
defined based on our experience and appear to work well. If
necessary, we will improve them in future work.

3.2.3 Identifying the Scenario Under Test

The scenario under test is the part of a test that is used
to set up the necessary environment for performing the ac-
tion. In order to identify it, we build an action dependency
graph that is rooted at the action. Figure 3 shows the action
dependency graph for our running example. At a high-level,
nodes in the action dependency graph are expressions in
the test and edges encode relational information among the
expressions. Solid edges indicate relations among the iden-
tifiers in the source and target expressions. For example,
in Figure 3, the solid edge labeled “req” indicates that the
expression req.setParameters(params) uses the identifier
“req”, which is used in the action. The type of relation is
indicated by the weight of the edge, with bold edges de-
noting that the target expression defines the identifier and
normal weight edges denoting that the target expression
uses the identifier. Dashed edges indicate relations among
the words in the test’s expected outcome and the target
node. For example, the dashed edges indicate that the word
“resolution” occurs both in the expected outcome, assertE-
quals (72, barcode.getResolution()) and the expression
params.put("resolution", "72").

Capturing relations among words in addition to relations
among identifiers allows the technique to identify expres-
sions that are related to the assertion but would not oth-
erwise be identified. It also has the benefit of reducing



the depth of expressions that are closely related to the ex-
pected outcome. For example, in Figure 3, the depth of
params.put ("resolution", "72") is reduced from two to
one. This helps ensure that such expressions are included
when the scenario under test is converted into English phrases
(see Section 3.3).

Algorithm 1 Building the action dependency graph

Input: Action: identified action
Input: Assertion: identified expected outcome

1: function BUILDGRAPH(action, assertion)
2: g < GRAPH

3:  worklist < {action}

4: while |worklist| # 0 do

5:  current < EXTRACT(worklist)

6:  for id € IDENTIFIERS(current) do

7 if VIsITED(id) then

8

: continue
9: end if
10: for use € Usgs(id) do
11: ADDUSEEDGE(g, current, use, id)
12: worklist <— worklist U {use}
13: end for
14: for def € DEFINITIONS(id) do
15: ADDDEFEDGE(g,current, def, id)
16: worklist «— worklist U {def}
17: end for
18:  end for

19: end while
20: for word € WORDS(assertion) do
21:  for node € g do

22: if CONTAINSWORD(node, word) then
23: ADDWORDEDGE(g, action, node, word)
24: end if

25:  end for

26: end for

27: returng
28: end function

Algorithm 1 shows pseudo-code for building the action
dependency graph. As input, the algorithm takes the test’s
identified action and expected outcome (assertion). The first
part of the algorithm, Lines 3 to 19, is responsible for adding
identifier-based relations. At a high-level, this part of the
algorithm is a typical worklist-based iterative process. First,
the worklist is initialized to contain the provided action.
Then, while it is not empty, an element of the worklist is
removed. Next, the algorithm iterates over each identifier in
the current expression. For each use and definition of the
identifier, an appropriate edge is added to the graph and the
expression containing the use or definition is added to the
worklist. The second part of the algorithm, Lines 20 to 26,
is responsible for adding word-based relations. First, this
part of the algorithm iterates over all words contained in
the provided assertion. The current implementation of the
WORDSs function produces a list of words by gathering all
identifiers and literal values from its argument, splitting them
using a camel case-based identifier splitter, and removing
stop words such as “get” and “set”. Next, the algorithm
iterates over each expression in the graph and determines
whether the expression contains any of the words from the
assertion. If so, an appropriate edge is added between the

root node of the graph (action) and the expression. Currently,
CONTAINSWORD performs a simple equality check. In future
work, we plan to enhance this part of the technique to detect
more types of matches. For example, understanding that the
number 72 and the strings “72” and “seventy two” all refer
to the same concept.

3.3 Phase 2: Text Generation

The goal of the text generation phase is to generate de-
scriptive test names using the information obtained by the
analysis phase. At a high level, this phase has two steps. The
first step is to select the information that will be included in
the resulting test name according to the provided template.
The second step is to translate the selected information into
a descriptive test name.

3.3.1 Test Name Templates

Because there is a wide variety in both what information
testers want to include in their test’s names and how they
want to present that information, the approach is configurable
and allows testers to provide a template for the generated
descriptive names. In this way, our technique provides testers
with more options based on their preferences about test
names. Both concise and very descriptive test names can be
generated by modifying the templates.

Currently, the technique uses three built-in templates that
were created based on common test naming patterns [33].
The small template only contains the test’s action. The
medium template extends the small template by also including
the expected outcome. Finally, the full template includes the
test’s action, the expected outcome, and the scenario under
test. In practice, names generated by the small template are
similar to the partial names we encountered in our study
while names generated by the medium and full templates are
comparable to names that we consider to be complete.

Choosing which parts of the action and expected outcome
to include is straightforward since they are both typically
single expressions. However, if all of the expressions included
in the scenario under test’s action dependency graph were
used, the resulting test names would be unacceptably long.
To address this situation, the technique prioritizes the ex-
pressions in the action dependency graph based on their
depth and incoming edge type. Currently, the technique
selects expressions with a depth of 1 and only selects ex-
pressions with incoming definition edges if expressions with
incoming use and name edges do not exist. In our running
example, this results in req.setParameters(params) and
params.put ("resolution", "72") being selected, but not
servlet = new BarcodeServlet(). After selecting the ex-
pressions, the technique orders them by their position in the
test. While this ordering scheme is simple, we found it to be
surprisingly effective. Because test names and bodies typi-
cally follow the same order, ordering by appearance results
in names that closely resemble real test names.

3.3.2 Translation

The last step of our technique is to translate the selected
expressions into a descriptive name. More specifically, our
technique needs to translate expressions written in Java
into natural language phrases and concatenate the English
phrases into legal test names. In this step, our technique
uses a suite of translators that are customized for various
expression types. When an expression needs to be translated,



the most specific translator is used. Currently our technique
implements translators for the most commonly used expres-
sions that appear in a test body. Specifically, our technique
has translators for the following expression types: (1) if the
expression is a single argument assertion, it is translated into
a predicate phrase using a hand-coded lookup table (e.g.,
assertTrue is translated into “is true”, assertNotNull is
translated into “is not null”, etc.), (2) if the expression is
a multiple argument assertion, it is translated into a link-
ing verb or phrase (e.g., assertEquals is translated into “is”
while assertSame is translated into “is identical to”, etc.),
(3) if the expression is an invocation of a getter method,
it is translated into a noun phrase by stripping the lead-
ing “get” (e.g., getWidth is translated into “width”), (4) if
the expression is a non-getter method invocation, it will be
translated into a verb phrase using the method name (e.g.,
req.setParameters(params) is translated into “set param-
eters” shown in Figure 2b), (5) if the expression is a class
initialization, it is translated into a gerund phrase (e.g., new
Foo() is translated into “creating foo”), (6) if the expression
is an assignment or a variable declaration, it is translated into
a short english sentence (e.g., int x = y is translated into “x
equals y”), (7) if the expression is a mathematical expression,
all mathematical symbols are translated into english words
or phrases (e.g., “a > b” is translated into “a is greater than
b”), and (8) otherwise, the default translation is to simply
eliminate all illegal characters for Java identifiers.

After translating the expressions into English phrases, the
technique performs some final adjustments depending on
where the phrase will be placed in the template. These
adjustments improve the fluency of the resulting test name.
For example, the expression req.setParameters(params) is
initially translated to “setParameters”. However, because
this phrase is part of the scenario under test which starts
with “when”, we modify the verb “set” to its gerund form
“setting” to improve readability. Finally the English phrases
are placed in the template with multiple phrases being joined
by the appropriate conjunction.

4. EVALUATION DESIGN

To evaluate our technique, we developed a prototype im-
plementation and investigated the following questions:

RQ1: Similarity. How similar are the automatically gener-
ated test names to human generated test names?

RQ2: Human Preference. Which automatically generated test
names are preferred by developers and how do the
names generated by our technique compare to the orig-
inal test names?

RQ3: Productivity. How much time could be saved by using
our technique rather than manually writing names?

The remainder of this section discusses our prototype imple-
mentation and provides a detailed discussion of relevant data
and analysis for each research question.

4.1 Prototype Tool

To experiment with our technique, we implemented it as
a prototype tool, NameAssist, for automatically generating
descriptive names for tests written using the JUnit testing
framework. The implementation of the analysis phase is
based on Eclipse’s abstract syntax tree (AST) framework
and implemented as an Eclipse plugin. We chose to use this

framework for several reasons. First, it parses source code
directly. This gives the analyzer access to variable names
and other sources of semantic information that are lost af-
ter the source code is compiled. Second, Eclipse provides
implementations of many types of static analysis (e.g., class
hierarchy analysis, call graphs, etc.) that we can leverage.
Third, Eclipse is a commonly used IDE. This allows develop-
ers to more easily access the technique and broadens the pool
of subjects that we can consider in our evaluation. In order
to identify relevant parts of a test body, the analyzer uses
a collection of visitors to walk the corresponding AST and
Eclipse’s code search API to build the action dependency
graph. The implementation of the text generation phase is
written in Java and translates Eclipse AST expressions into
natural language using the rules described in Section 3.3. The
template design allows for easily extending and improving
the implementation in future work.

4.2 Alternate Approaches

To conduct a suitable evaluation of NameAssist, we com-
pared it against two alternative test name generation ap-
proaches: a random approach and a term frequency—inverse
document frequency (TFIDF)-based approach. The TFIDF-
based approach represents the current state-of-the-art in
summarizing source code and the random approach serves
as a baseline.

4.2.1 TFIDF-based Approach

TFIDF is a metric for indicating how important a term
(word) is to a specific document in a corpus (collection of
documents). A term’s TFIDF value with respect to a docu-
ment increases as a function of the term’s frequency in the
document, but is offset by the frequency of the term in the
corpus. While TFIDF is more commonly applied to natural
language, it has been successfully applied to source code [9].
Because TFIDF has been shown to be an effective method
for summarizing software artifacts code [5, 9], we choose it as
the basis for an alternative test name generation approach.

The TFIDF-based test name generator considers the col-
lection of methods in a software project as a corpus and
the words that appear in the project’s methods as terms.
To transform a software project into a corpus, we use an
Eclipse plugin. First, the methods in the project are identi-
fied using Eclipse’s Java model. Then terms are extracted
from each method by using an AST visitor that identifies
all literal values and identifiers in the method. Note that, if
the method is a test, the test’s name is excluded from the
set of identifiers. This prevents the approach from having
access to the original test names. Identifiers are then split
using a custom identifier splitter based on conservative camel
case splitting [11]. Finally, stop words are removed and the
resulting document is added to a Lucene index.

To generate a name for a test, the approach queries the
Lucene index to find the n terms with the highest TFIDF
values with respect to the test’s body. The words are then
ordered by the position of their earliest appearance in the test
and concatenated together. We chose this ordering scheme
since it matches the ordering scheme used by NameAssist for
the scenario under test.

4.2.2 Random Approach

To generate a name for a test, the random approach
(1) identifies the set of words contained only in the body of



the test (using the same AST visitor as the TFIDF-based ap-
proach), and (2) selects n words from the set, orders them by
position of earliest appearance in the test, and concatenates
them together.

4.3 Considered Unit Tests

Because our evaluation involves human developers, both
for generating reference test names (see Section 4.5) and
evaluating generated names (see Section 4.8), we are limited
in the number of tests we can consider. As a result, we chose
to consider 60 tests in our evaluation, which allowed the
developers to complete their tasks in a single afternoon.

To select the 60 used in our evaluation, we first generated a
list of all Java projects hosted on GitHub. Second, we filtered
the list to remove projects that cannot be automatically
imported into Eclipse. Because all of the automated test
name generation tools are Eclipse-based, selecting Eclipse-
compatible projects allows us to apply the tools without
modifying the projects. Third, we sorted the projects by
the number of JUnit tests they contain and selected the
20 projects with the highest number of tests. Finally, we
randomly selected, from the chosen projects, 60 tests that
contain a single assertion.

4.4 Evaluation Measure: BLEU

At a high-level, we can view test name generation as a
translation task; a descriptive test name is a translation of a
test’s body into natural language. By structuring the task in
this way, we can use BLEU [24]—a commonly used measure
for assessing the quality of text that has been translated
from one language to another—to evaluate the automated
test name generation techniques. Brieflyy, BLEU calculates a
score for a candidate translation by comparing the candidate
to a set of reference translations using a modified n-gram
precision calculation. The calculated score ranges from 0 to 1
and indicates the similarity of the candidate to the references
with scores closer to 1 denoting higher levels of similarity.
In our context, a candidate translation is an automatically
generated test name, the reference translations are human-
generated test names, and a score of 1 indicates that an
automatically generated test name is identical to at least one
human-generated test name.

When calculating BLEU scores, an n-gram length greater
than 1 is typically used because it takes into account or-
der among the words, which is an important component
of fluency. In our experiments, we use an n-gram length
of 4 (BLEU,,—4) because experiments on natural language
sentences have shown that it has the best correlation with
human judgement [24]. However, because test names are
not typical natural language sentences, we also calculate
scores using an n-gram length of 1 (BLEU,,—1) which ignores
ordering and treats the names as bags of words.

4.5 Reference Translation Creation

A test’s original name is an obvious point of comparison
for the automatically generated names. However, such a
comparison has several issues. First, as we demonstrated
in Section 2, test names are often poor. Because our goal
is to generate test names that are better than what are
typically written by developers, the original names are not
necessarily the standard we want to achieve. Second, it does
not take into account the possibility that multiple, equally
good names may exist for the same test. Assuming that the

original name is the only correct possibility is unnecessarily
pessimistic. Rather we want to know if the automatically
generated names are similar to any human generated name,
not only the arbitrarily chosen original name.

To address these issues, our set of reference translations
includes the original name as well as additional human gen-
erated names. To create the additional set of names, we con-
tacted three experienced Java developers who are currently
graduate students at the University of Delaware (UDel). The
developers were chosen because they performed well in our
software testing course and have several years of Java de-
velopment experience. We gave each developer our set of
60 tests with their names removed. We then asked them to
create three names, each corresponding to a common naming
pattern: one containing only information about the test’s
action, one containing information about the test’s action
and predicate, and one containing information about the
test’s action, predicate, and any other information they felt
was important to include. Note that the developers were
only given brief definitions of action and predicate and ex-
amples of each, taken from real test suites. They had no
knowledge of NameAssist nor how it generates names. They
were also not given any guidance on word choice, phrasing,
or how to structure the test names; they were free to use
their best judgement and experience. Figures 4b, 4c and 4d
show the various developer written names for the test shown
in Figure 4a.

4.6 Name Generation Procedure

To create the automatically generated test names, we
applied each test name generation technique to our set of 60
tests. For NameAssist, we generated three names, one for
each of NameAssist’s built-in templates. To generate names
using the random and TFIDF-based approaches, we set n
to be the number of words (excluding the leading “test”)
in the corresponding name generated by NameAssist. For
example, if the name generated by NameAssist using its
full template contained seven words, the corresponding full
template names generated by the TFIDF-based and random
approaches would also contain seven words. Figures 4b, 4c
and 4d also show the test names generated by the automated
approaches for the test shown in Figure 4a.

4.7 RQ1: Similarity

To investigate this research question, we compared each
type of automatically generated test name with their corre-
sponding human-generated names using their BLEU scores.
For example, the NameAssist-generated name shown in Fig-
ure 4d achieved a BLEU,,—4 score of 0.67 when compared
against the three developer written names shown in Figure 4d
and the original name testGetExpression_1.

Figure 5 shows the result of this comparison in several
Tukey-style box plots. The figure is faceted by the n-gram
length (1 or 4) used to compute the BLEU score (rows) and
the template (small, medium, or full) used to generated the
test names (columns). For example, the upper left-most box
plot shows the results for small test names using an n-gram
length of 1. In each box plot, the x-axis shows the technique
used to generate the candidate test name and the y-axis
shows the BLEU score. In each box, the line and the upper
and lower edges show the median and the upper and lower
quartiles, respectively, and the diamond indicates the mean.

As the figure shows, scores calculated using BLEU,—;



{
NavigatorExpression navExpr = new NavigatorExpression();
navExpr.setSpecId(NavigatorExpression.SPEC_SUPER_ID);
navExpr.setSpecSuperLevel(4);
String expression = navExpr.toString();
assertEquals("super(4)", expression);

(a) testGetExpression_1 from entando-core-engine

Developer testSettingSpecSuperLevel
Written testToString
testSetSpecSuperLevel

NameAssist testToString
BLEU,_q: 1.0, BLEU,_,: 1.0

BLEUp—1: 1.0,

Developer testSettingSpecSuperLevells4
Written testSetSpecSuperLevells4
testToStringIsSuper4d

NameAssist testToStringExpressionIsSuper4
BLEU,—1: 1.0, BLEU,_4: 0.51

TFIDF testNavigatorExpressionNavExprExpressionSuper
BLEU,_q: ©.33, BLEU,_4: 0.23

Random testNavigatorExprIdIDEqualsSuper
BLEU=q: 0.17, BLEU_4: 0.19

(b) Action and Predicate names

Developer testSettingSpecSuperLevelIs4WhenSettingSpecSuperLevelWith4
Written testSetSpecSuperLevelIs4WhenInitializingNavigatorExpression
testToStringIsSuperd4wWhenSetSpecIdSetSpecSuperLevel

NameAssist testToStringExpressionIsSuper4WhenSettingSpecSuperLevelAndSettingSpecId
BLEU._,: 0.67
n=4

TFIDF testNavExpr TFIDF testNavigatorExpressionNavExprSpecSPECSUPERIDSuperLevelExpressionToEqualsSuper

BLEU_1: 0.0, BLEU,_4: 0.0

BLEUp_1: 0.54, BLEU,_,: 0.17

Random testNavigatorLevel Random testExpressionNavExprSpecIdSUPERIDSuperLevelStringToAssertEqualsSuper

BLEU_q: 0.5, BLEU,_4: 0.7

(c) Action names

BLEUp_1: 0.62, BLEU,_,: ©0.18

(d) Action, Predicate, and Other Information names

Figure 4: Human generated reference names and automatically generated names with associated BLEU scores

for small (c), medium (b), and large (d) sizes.
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Figure 5: BLEU score distributions.

tend to be higher than scores calculated using BLEU, —4.
Intuitively, this makes sense as requiring the words in the
automatically generated test names to have the same order as
in the human-generated names is a more difficult task. The
exception to this trend are small test names. Because small
names typically only have one or two words, the ordering
requirement is easier to satisfy and does not negatively impact
the scores as much.

For reference, a recent comment generation tool achieves
mean BLEU,,—4 scores of ~0.54 and =0.63 when translating
Python statements into English and Japanese pseudo-code,
respectively [23]. While we cannot judge the performance of
techniques in different domains by considering their BLEU
scores, such comparisons can give a general sense of the

relative difficulty of the translation task. Here, it appears
that generating small test names is easier than generating
pseudo-code while generating full test names is more difficult.

To gain more insight into the relative performance of the
techniques, we performed pairwise Mann-Whitney-Wilcoxon
(wilcox) tests to determine whether the populations of scores
shown within each box plot are identical. We chose to use the
wilcox test because we have one nominal variable (the tech-
nique used to generate the name), one measurement value
(the BLEU score), and the test does not require normally
distributed data (pairwise Shapiro-Wilk Normality tests in-
dicate that it is unlikely the BLEU scores are normally
distributed). The resulting p values were adjusted using Ben-
jamini & Hochberg’s false discovery rate controlling method
to account for performing multiple comparisons [2]. We chose
a significance level («) of 0.05.

The results of the wilcox tests confirm our initial observa-
tions: in every case, (1) NameAssist’s scores are significantly
different from the scores for the TFIDF-based and random
techniques (p value < 0.001), and (2) the scores for the
TFIDF-based and random techniques are not significantly
different from each other. Moreover, in nearly all cases, the
magnitudes of NameAssist’s improvements over the random
and TFIDF-based techniques are “large”, as measured by
Cliff’s Delta (i.e., § > 0.474). The only exception is for scores
in the upper right boxplot (full configuration, BLEU,—1),
where the magnitudes of NameAssist’s improvements are
“medium” (i.e., 0.33 < § <= 0.474).

Overall, we believe that these results are promising as they
show that names generated by NameAssist are significantly
more similar to human-generated names than the names
generated by the alternative approaches.

4.8 RQ2: Human Preference

While BLEU can give a good sense of how similar a candi-
date translation is to a set of reference translations, it does
not take into account all aspects of human judgement. For
example, it cannot take into account the relative importance



Table 1: Qualitative results showing how frequently
names generated by NameAssist are preferred over
names generated by the alternative approaches (a)
and the original test name (b).

Config. % Majority % NameAssist
small 98.3 96.7
medium 98.3 98.3
full 100.0 100.0

(a) Random vs. TFIDF vs. NameAssist

% Majority % Orig. % NameAssist

98.3 16.6 11.7 1.7
(b) Original vs. NameAssist

% Equiv.

of the words within a name (i.e., names that include many
relatively unimportant words but exclude very important
words may have a misleadingly high score). Consequently,
we investigated our second research question by using human
raters to judge (1) which of the automatically generated test
names they prefer, and (2) whether they think the name gen-
erated by NameAssist is better than, equivalent to, or worse
than the original name. As raters, we again selected three
experienced developers who are currently graduate students
at UDel. Like the developers who generated the reference
names, these students were selected because they performed
well in the software testing course and have several years of
development experience.

To determine which of the automatically generated names
the raters prefer, we showed each rater each of the 60 tests
with the original name removed. Then, for each test name
size, we showed the rater the three automatically generated
names, in random order, and asked them to select the name
they felt was the most appropriate for the test.

Table la shows a summary of the developers’ ratings
comparing the automatically generated names. The first
column, Config. shows the test name size. The second
column, % Majority, shows the percentage of cases where
at least two of the three raters chose the same name, and
the final column, % NameAssist, shows the percentage of
cases where a majority of raters chose the name generated
by NameAssist. As this data shows, in nearly all cases, the
majority of raters chose the name generated by NameAssist.
In fact, there were only three cases, two small names and one
medium name, where the NameAssist generated name was
not chosen. In two of these cases, there was no agreement
among the raters (i.e., they each chose a different name)
and in the final case, a majority of raters chose the name
generated by the TFIDF-based approach.

To determine whether the raters think the original name is
better than, equivalent to, or worse than the name generated
by NameAssist, we showed each rater each of the 60 tests
along with the original name and the small NameAssist
generated name. Then, we asked them to them to select the
name they felt was most appropriate or to indicate that the
names were equivalent. Due to the threat of carryover effects
(raters repeatedly seeing the original name), we were only
able to compare against the original name once. Because
small names are most similar to the original names in terms
of information content—the mean number of words in the
original names is 2.3 and the means for NameAssist’s small,

medium, and full names are 2.0, 7.5, and 11.4, respectively—
we chose them as the most appropriate comparison point.

Table 1b shows a summary of the developers’ ratings
comparing original names and NameAssist names. The first
column, % Magjority, shows the percentage of cases where
at least two of the three raters chose the same name. The
second, third, and fourth columns, # Orig., % Equiv., and %
NameAssist show the percentage of cases where a majority of
raters chose the original name, felt the names were equivalent,
and chose the name generated by NameAssist, respectively.
As this data shows, the names generated by NameAssist
compare favorably to the original test names: ~83 % of the
time, the name generated by NameAssist is preferred over
or equivalent to the test’s original name.

As a final step in our qualitative human evaluation, we
asked the raters to informally comment, in general, on the
accuracy and adequacy of the names they chose as the most
appropriate (i.e., did the names focus on what the rater felt
was the important aspects of the test and was any relevant
information was missing from the name?). Essentially, we
were interested in knowing whether the raters felt the names
would be useful, or if they were simply picking the option that
they considered to be the least bad. Again, their responses
were encouraging. In general, they felt that the names would
be useful and included the information from the tests that
they felt was important to summarize.

Overall, we believe these results are also promising. They
show that names generated by NameAssist are (1) nearly
always preferred over names generated by the alternative
techniques, (2) preferred over or are equivalent to the original
test names 83 % of the time, and (3) likely to be useful in
that they are not missing relevant information from the test.

4.9 RQ3: Productivity

The purpose of our third research question is to investigate
how much time could be saved by using NameAssist rather
having developers manually create test names. To answer
this question, we compared the execution time of NameAssist
against the amount of time needed by developers to manually
generate names. To generate the names for the 60 tests used
in our evaluation (see Section 4.5), it took each developer
~3 h. In contrast, when executed on a modest desktop ma-
chine (3.2 GHz Intel Core i5-650 processor, 8 GB of memory,
Java version 1.8.0 configured to use 4 GB of heap space),
NameAssist took less than 30s to generate the same number
of names for the same tests.

Like for our other two questions, these results are encourag-
ing. Because NameAssist’s execution time is several orders of
magnitude less than the amount of time needed to manually
generate descriptive names, it can save significant amounts
of developer time and effort.

4.10 Threats to Validity

There are a number of threats to validity of our evaluation.
One threat is whether the test cases used in our evaluation
are representative. To mitigate this threat, we randomly se-
lected them from multiple open source Java programs hosted
on GitHub. Because we examined many of the tests in the
Sourceforge corpus from the motivating study when develop-
ing NameAssist, using a different source of tests helps control
for potential overfitting and better evaluate the heuristics’
applicability for new data set. Additionally, the names gen-
erated by our developers may not be representative of all



test names styles or they may share a common bias as a
result of taking the same testing course. To account for this
possibility, we gave them little guidance in creating the test
names and we compared the automatically generated names
against the original test names in addition to the developer
written names. Finally, the developers in our qualitative
evaluation may not have had an adequate grasp of the task
or the purpose of the test. To address this threat, each
developer was given a detailed document describing the task
and we conducted a pilot study to detect any issues before
performing the full study. In addition, we made sure to select
developers with several years of professional experience.

S. RELATED WORK

In this paper, we present a new approach that combines
source code summarization, program analysis, and NLPA
techniques. As such, it is related to work in many different
research fields. In this section, we discuss the most closely
related work in each area.

5.1 Code Summarization

Code summarization techniques attempt to simplify com-
prehension tasks by reducing the amount of code that a
developer needs to read. Within this area, Kamimura and
Murphy’s [17] and Li et al.’s [19] approaches for annotating
tests with human-oriented summaries are the most related
to our work. While their approaches also use static analysis
to identify relevant parts of a test’s body, their goal is to
generate multi-line comments rather than descriptive names.
As such, their approaches are complementary to ours; a de-
scriptive name provides an initial overview of a test that can,
if necessary, be augmented by a human-oriented summary.

Also complementary to our work are approaches for sum-
marizing or documenting other code sequences: Sridhara
et al. proposed an approach for generating summary com-
ments for Java methods based on structural and linguistic
clues [26], automatically detecting and describing high level
actions within methods [27], and generating comments for
method parameters [28]; Haiduc et al. investigated using
various text retrieval techniques to generate summaries of
both Java methods and classes; Moreno et al. proposed a
technique to generate natural language summaries for Java
classes by using code stereotypes and other heuristics [22];
Ying and Robillard presented a machine learning based tech-
nique for generating summaries of code fragments on the
web pages [32]; McBurney and McMillan combine source
code summarization and contextual information, gathered
via static program analysis, to generate documentation [21];
and Allamanis et al. propose a neural probabilistic language
model for source code that is used to generate variable,
method and class names [1]. While Allamanis et al.’s ap-
proach could be applied to generate names for tests, they
also recommend building the language model using a train-
ing set with high quality names that are rarely existing in
most projects’ test suites as we discussed in the motivation
study. Because the focus of these techniques is generating
summaries or names for other types of code or situations,
they are unlikely to generate descriptive test names without
significant modification.

5.2 Name/Implementation Mismatches

Within the area of name/implementation mismatches, re-
searchers have investigated techniques for detecting API

documentation errors. For example, Zhong and Su propose
an approach that achieves this goal using a combination of
NLPA and program analysis [34]. In addition to documenta-
tion errors, researchers have also investigated techniques for
detecting, and suggesting fixes for, method name bugs— situ-
ations where a method’s name does not match its implemen-
tation: Hgst and @Dstvold use method naming conventions,
mined from 100 Java projects, to identify elements (loops,
method calls, field accesses, etc.) that should be present in a
method’s body [14]; and Suzuki et al. use an n-gram model
to detect method names that are incomprehensible and to
suggest the next word that should appear in a method name,
given a prefix . While Hgst and @stvold’s and Suzuki et al.’s
approaches could be applied to tests, they are ill-suited to
this purpose. The structural clues that they use, such as
non-void return types, parameter types, and loops, are not
typically present in tests.

5.3 Natural Language Program Analysis

Finally, in the area of NLPA, researchers have investigated
identifier splitting techniques (e.g., [3, 6, 7, 11]); abbrevi-
ation expansion techniques (e.g., [4, 10, 20]); techniques
for tagging words with their part of speech and identi-
fying large semantic structures (e.g., [8]); techniques for
identifying programming-specific synonyms and antonyms
(e.g., [12, 16, 25, 31]); and investigations into the lexicons
used by programmers (e.g., [13, 15]. Again, these techniques
are not alternatives to our approach but can be used to
improve its accuracy and effectiveness.

6. CONCLUSIONS AND FUTURE WORK

We presented a novel NLPA-based technique for auto-
matically generating descriptive names for existing tests
that contain a single assertion. The technique helps reduce
maintenance costs by simplifying the comprehension task
of understanding the purpose of a test. We also presented
NameAssist, a prototype implementation of the technique
that generates descriptive names for unit tests written using
the JUnit framework. We evaluated NameAssist to provide
initial evidence that the technique is feasible and useful:
(1) the BLEU scores of names generated by NameAssist are
significantly higher than the scores of names generated by the
TFIDF-based and random approaches, (2) names generated
by NameAssist are nearly always preferred over names gener-
ated by the alternative approaches, (3) names generated by
NameAssist are preferred over or are judged equivalent to
the original test names 83 % of the time, and (4) the runtime
costs of NameAssist are several orders of magnitude less
than the amount of time needed by developers to manually
generate descriptive names.

In addition to extending the evaluation, we see several
directions for future work. First, dynamic program analysis
could be an alternative technique for identifying the informa-
tion of a test. Second, although it is difficult to summarize
and name large and complex test bodies with multiple asser-
tions, our technique may be modified to help test developers
split a large test into several smaller tests with appropriate
names.
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